Wittig Condensation Products from Nickel meso-Formyl-octaethylporphyrin and -aetioporphyrin I and Some Cyclisation Reactions

By Dennis P. Arnold, Richard Gaete-Holmes, Alan W. Johnson, Andrew R. P. Smith, and Geoffrey A. Williams, School of Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ

Abstract

Various Wittig condensation products from the named meso-formylporphyrins are described, together with some transformations of the products. Vilsmeier formylation of the nickel meso-vinyl derivatives causes substitution mainly in the side-chain. and acid cyclisation of the meso-acrylaldehyde products results in the formation of a fused benzene ring and the structure of the product is fully defined by X-ray crystallography. In the absence of nickel. mild acid cyclisations of the meso-acrylaldehydes or esters yield purpurins.

In earlier papers, ${ }^{1-3}$ we have described some reactions of the aldehyde group of nickel meso-formyl derivatives [(la) and (2a) respectively] of aetioporphyrin I and octaethylporphyrin (OEP), and these included reductions to the carbinols (1b) and (2b) and the formation of

(1) M	R
a; Ni	CHO
b; Ni	$\mathrm{CH}_{2} \mathrm{OH}$
c; Ni	CN
d; Ni	$\mathrm{CH}(\mathrm{OH}) \mathrm{Ph}$
e; Ni	$\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$
f; Ni	$\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$
g; Ni	$\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}$
h; Ni	$\mathrm{CH}=\mathrm{CH}_{2}$
i; Ni	$\mathrm{CH}=\mathrm{CHPh}$
j; Ni	$\mathrm{CH}=\mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
k; Ni	$\mathrm{CH}=\mathrm{CH}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{Me}$
1; Ni	$\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}$
m; Ni	$\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \mathrm{OH}$
n ; Ni	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$
o; H_{2}	$\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}$

several derivatives including the meso-cyanoporphyrins (lc) and (2c) by dehydration of the oximes. Wittig condensations, ${ }^{4}$ Knoevenagel condensations, Schiff base formation ${ }^{5,6}$ and other reactions ${ }^{7,8}$ have been described in the literature. Thus, the nickel meso-formylporphyrins (la) and (2a) show most of the normal reactions of aromatic aldehydes. However, unlike other metal complexes of simple meso-substituted porphyrins, the nickel meso-formyl derivatives give bright green solutions and their electronic spectra show broadened and split Soret bands as well as an extra band at ca. 650

[^0]nm . These properties are probably a measure of distortion of the porphyrin ring. ${ }^{6}$ The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the meso-formylporphyrins on the other hand are unexceptional and are in line with those of the planar porphyrins.

In our previous paper, ${ }^{2}$ the reaction of the primary carbinol (2b) with sulphuric acid was described. The unexpected product was the dimer (3), presumably formed by dimerisation of the radical (2d), itself formed from the carbonium ion (2e), by electron transfer from the metal porphyrin. In an attempt to define the scope of this dimerisation, we prepared ${ }^{3}$ the methylcarbinol (2 p) and the phenylcarbinol ($2 g$) by appropriate Grignard (and now with phenyl-lithium) reactions. Reaction of the

methylcarbinol (2f) with sulphuric acid gave the mesovinyl compound (2 h) as expected; on the other hand, the phenylcarbinol gave (4), by a reaction involving formation of the carbonium ion, rearrangement, and loss of proton.

The present paper describes a study of reactions of various Wittig products from the nickel meso-formyl porphyrins. Previously, Callot ${ }^{4}$ had described the con-

[^1]densation of the stabilised Wittig reagent, methoxycarbonylmethylene(triphenyl)phosphorane with (2a) and showed that the product (2i) could be demetallated by the action of sulphuric acid. We have prepared analogous compounds (le) and (2i) and have used the vinylogous Wittig reagent, methoxycarbonylallylidene(triphenyl)phosphorane, in the aetioporphyrin series to give (lf) which was demetallated by acid treatment, and reduced to the corresponding aldehyde (lg) by treatment with a limited amount of aluminium hydride. Most of the Wittig reagents used however were prepared in situ using a mixture of the appropriate phosphonium salt and phenyl-lithium, and in this manner a range of meso-vinyl derivatives of nickel porphyrins have been prepared, comprising the meso-vinyl (1h) and (2h), -propenyl (2j), -styryl (l i) and (2 k), and p-methylstyryl (1 j) substituents. However, when (la) was treated with the bisphosphonium salt, $\left(\mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}} \cdot \mathrm{CH}_{2}\right)_{2} 2 \mathrm{Br}^{-}$, prepared from ethylene dibromide and triphenylphosphine, in the presence of n -butyl-lithium in an attempt to prepare a bis-porphyrin, the product was, unexpectedly, the meso-heptenyl derivative (lk), presumably formed by the following mechanism:

(a)

Reaction of (la) with allyl(triphenyl)phosphonium bromide in the presence of phenyl-lithium gave only the phenylcarbinol (ld).

Some reactions of the nickel meso-vinylporphyrins have been carried out. Thus, although reaction of nickel meso-styrylaetioporphyrin I (1i) with the Vilsmeier reagent caused further meso-substitution to yield a mixture of the 10 - and 15 -formyl derivatives, the nickel meso-vinyl porphyrins (1 h) and (2 h) under similar conditions gave the nickel meso-acrylaldehydes (11) and (21) in $c a .85 \%$ yield by reaction at the terminal position of the side-chain. Related reactions of porphyrin β-vinyl groups have been reported by Nichol. ${ }^{9}$ Like the nickel meso-formylporphyrins (1a) and (2a), the meso-acrylaldehydes were green and showed split Soret bands. In the formylation reaction two additional green products were isolated which were shown to have been formed by meso- as well as side-chain formylation. They were distinguished by the signals of the two remaining porphyrin meso-hydrogens. The more abundant and less polar isomer showed two separate signals and was therefore the 10 -formyl derivative (5); the more polar isomer showed a single signal for the meso-hydrogens and this was the 15 -formyl derivative. Reduction of the nickel meso-acrylaldehydes (11) and (21) with sodium borohydride gave the corresponding carbinols (1 m) and (2 m). A mixture of the aldehyde (11), the carbinol (lm) as well as the saturated carbinol ($\mathbf{l n}$) was obtained by borohydride

[^2]reduction of the meso-acrylic ester (le), but the Vilsmeier route was preferable preparatively. With the meso-acrylic esters, aldehydes, and alcohols available, we have been able to extend our earlier studies on the effect of acids on porphyrins containing a variety of mesosubstituents. When the metal-free meso-acrylaldehyde $(2 \mathrm{n})$ was heated under reflux in acetic acid under nitrogen it gave an isomeric compound, the n.m.r. and electronic spectra ($\lambda_{\text {max }} 440,505,554,592,672$, and 734 nm) of which suggested the purpurinaldehyde structure (6a). Under these cyclisation conditions, the nickel complex (21) was unaffected. A similar cyclisation of the metalfree porphyrin containing a meso-acrylic methyl ester (20) to the purpurin (6b) was also achieved. The formation of these purpurins recalls Woodward's classical chlorophyll synthesis, ${ }^{10}$ in which an unsymmetrical porphyrin was reduced in ring D to give the corresponding chlorin. That reaction was achieved using a porphyrin containing a meso-acrylic ester grouping which, first, was cyclised by heating in acetic acid to give the purpurin and then subjected to further manipulations (oxidation, hydrolysis) in order to produce the required $\mathrm{C}-17$ hydrogen substituent. The cyclisation, doubtless aided by steric crowding and the electron-attracting powers of the ester group, remained a unique observation until recently when Fuhrhop ${ }^{6}$ reported that the porphyrin mesounsaturated dicarboxylic acid monomethyl ester (2p) was cyclised by heating in toluene to give the purpurin (6 b) whereas the diacid (2 q) was cyclised by treatment with concentrated sulphuric acid to give the ketone (8).
When the meso-acrylaldehydes (11) and (21) were treated with concentrated sulphuric acid for 3 min at room temperature, the metal-free porphyrin aldehydes (10) and (2 n) were obtained in $c a .40 \%$ yields along with a second green product in each case. Longer exposure to sulphuric acid caused decomposition of the metal-free meso-aldehydes and after 2 h at room temperature the products were mainly ($c a .40 \%$) the green products, which each possessed a fused benzene ring and a gem-dialkyl group. The same green compounds were obtained in $c a .15 \%$ yield when the nickel complexes of the γ porphyrinylallyl alcohol (2 m) were treated with sulphuric acid in $N N$-dimethylformamide. The product was assigned structure (7) in the octaethylporphyrin series on the basis of its mass spectrum and n.m.r. spectra. The ${ }^{1} \mathrm{H}$ spectrum clearly demonstrated the presence of three meso-protons ($\delta 7.72,8.45$, and 8.82), the benzenoid protons ($87.70,2 \mathrm{H}$ and $8.8,1 \mathrm{H}$), and the gem-diethyl group with signals at $\delta 0.04(\mathrm{t})$ and 2.24 (q), recalling the ${ }^{1} \mathrm{H}$ n.m.r. spectra of the gemdialkylporphyrin ketones of Inhoffen. 7,11 The ${ }^{13} \mathrm{C}$ spectrum assignments, fully supported by off-resonance decoupling, are shown on formula (7). The mass spectrum suggested the loss of an oxygen from the initial aldehyde (21) and the electronic spectrum of (7) showed a strong chlorin-type band at $677 \mathrm{~nm}(\varepsilon 36700)$ as well as a Soret band at 416 nm ($\varepsilon 69200$). The cyclisation of the

[^3]acylaldehyde side-chain to form a benzene ring formally involves a reduction step, the mechanism of which has

not been established, although it is known that nickel porphyrin complexes can act as electron donors under acidic conditions. ${ }^{2}$

Like the nickel meso-formylporphyrins, the mesoacrylaldehyde (2l) also underwent normal Wittig condensations and a sample of the meso-buta-l,3-dienyl derivative (2r) was prepared in good yield by this method.

Crystal Structure Determination of (7).-Crystal data. $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{Ni}, \quad M$ 629.5. Monoclinic, $a=14.132(1)$, $b=16.436(1), \quad c=15.720(1) \quad \AA, \quad \beta=115.487(5)^{\circ}$, $U=3296.0 \AA^{3}, D_{\mathrm{o}}=1.268 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$, space group $P 2_{1} / c$, Mo- K_{x} radiation (graphite crystal monochromator), $\lambda=0.70926 \AA, \mu=6.24 \mathrm{~cm}^{-1}$.

Crystals suitable for X-ray analysis were grown from dichloromethane-methanol solution. Measurements were made on a crystal of approximate dimensions 0.5 $\times 0.2 \times 0.3 \mathrm{~mm}$ mounted about the a-axis. Oscillation, Weissenberg, and precession photographs showed the crystals to be monoclinic, with systematic absences $0 k 0$ with k odd and $h 0 l$ with l odd uniquely determining the space group to be $P 2_{1} / c$. Accurate unit cell parameters, together with their estimated standard deviations (e.s.d.s) were derived by a least-squares analysis of the setting angles determined for 12 angularly well separated reflections, each with a 20 value greater than 30°. All data were collected at $21{ }^{\circ} \mathrm{C}$ from a Hilger and Watts automatic four-circle diffractometer (Y290) using graphite monochromatised Mo- K_{α} radiation ($\lambda=0.70926$ \AA). Intensities were measured via an $\omega-2 \theta$ scan regime within the range $200-50^{\circ}$; the intensities of 6784 reflections were measured and 4012 independent, statistically significant $[I \geqslant 30(I)]$ reflections formed the
basis for the structure determination and refinement. No significant variations in the intensities of 3 standard reflections were observed and the data were corrected for Lorentz and polarisation effects but not for absorption.

The structure solution and refinement proceeded using the SHEL-X system of G. M. Sheldrick, University of Cambridge. A three-dimensional Patterson synthesis together with a Fourier and difference synthesis yielded the positions of all non-hydrogen atoms. Least-squares refinement of atomic co-ordinates and individual isotropic temperature factors was performed in the fullmatrix mode, the function minimised being $\Sigma w \Delta F^{2}$ where w is the weight assigned to the $\left|F_{0}\right|$ values and $\Delta F=\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right|$. After five cycles using unit weights, refinement converged with R, defined as. $\Sigma \Delta F / \Sigma\left|F_{\mathrm{o}}\right|$, 0.0623 . A further difference synthesis then yielded the positions of all hydrogen atoms and these were included

Table 1
Final atomic parameters for (7). E.s.d. values (in parentheses) refer to the least significant digits

Atom	x / a	y / b	z / c
Ni	0.224 4(0)	$-0.1136(0)$	$0.9392(0)$
$\mathrm{N}(1)$	0.2585 (2)	-0.038 2(2)	$0.8618(2)$
$\mathrm{N}(2)$	0.3640 (2)	-0.158 6(2)	$0.9854(2)$
$\mathrm{N}(3)$	$0.1934(2)$	-0.1842(2)	$1.0220(2)$
$\mathrm{N}(4)$	0.0793 (2)	-0.075 7(2)	0.884 6(2)
$\mathrm{C}(1)$	$0.3551(3)$	-0.020 3(2)	$0.8651(2)$
C (2)	0.445 2(3)	-0.064 4(2)	0.917 3(2)
$\mathrm{C}(3)$	0.4478 (3)	-0.1313(2)	0.968 7(2)
$\mathrm{C}(4)$	0.5367 73)	-0.185 5(2)	$1.0124(2)$
C(5)	0.638 5(3)	-0.1770(2)	1.0054 (3)
C(6)	0.6389 9(4)	-0.2218(3)	0.9218 (4)
C(7)	0.5071 (3)	-0.245 7(2)	1.054 0(2)
C(8)	0.5675 (3)	-0.318 7(2)	$1.1061(3)$
C(9)	$0.5334(4)$	-0.3970(3)	$1.0491(3)$
$\mathrm{C}(10)$	0.4007 (3)	-0.227 5(2)	1.038 6(2)
C(11)	0.347 6(3)	-0.269 2(2)	$1.0812(2)$
C(12)	0.254 4(3)	-0.244 3(2)	$1.0782(2)$
C(13)	0.210 7(3)	-0.281 2(2)	1.142 2(2)
C(14)	0.2891 (3)	-0.278 4(2)	1.246 6(3)
$\mathrm{C}(15)$	0.3307 (4)	-0.1950(3)	$1.2833(3)$
C(16)	$0.1771(3)$	-0.370 5(2)	$1.1146(3)$
C(17)	$0.0982(4)$	-0.3828(3)	1.013 7(3)
C(18)	$0.1167(3)$	-0.228 3(2)	$1.1187(2)$
$\mathrm{C}(19)$	$0.0442(3)$	-0.2274(2)	1.154 3(3)
$\mathrm{C}(20)$	-0.039 6(3)	-0.173 2(2)	$1.1161(3)$
C(21)	-0.052 3(3)	-0.1260(2)	1.0393 (2)
$\mathrm{C}(22)$	0.019 0(3)	-0.129 3(2)	0.9980 (2)
C(23)	$0.1082(3)$	-0.176 8(2)	1.044 7(2)
$\mathrm{C}(24)$	0.0009 (3)	-0.091 1(2)	0.9110 (2)
C(25)	-0.099 6(3)	-0.068 0(2)	0.838 2(2)
C(26)	-0.2065(3)	-0.082 8(2)	0.832 8(2)
$\mathrm{C}(27)$	-0.252 8(3)	-0.0113(3)	0.8641 (3)
$\mathrm{C}(28)$	-0.080 4(3)	-0.035 4(2)	0.7675 (2)
$\mathrm{C}(29)$	-0.158 6(3)	$-0.0060(3)$	0.6730 0(3)
$\mathrm{C}(30)$	-0.174 7(4)	-0.067 8(4)	$0.5965(3)$
C(31)	$0.0305(3)$	$-0.0369(2)$	$0.7977(2)$
$\mathrm{C}(32)$	0.0821 (3)	0.0051 (2)	$0.7557(2)$
C(33)	0.1890 (3)	0.0099 (2)	$0.7889(2)$
C(34)	$0.2441(3)$	0.0589 (2)	0.749 1(2)
$\mathrm{C}(35)$	0.1935 (3)	$0.1162(2)$	$0.6670(2)$
C(36)	$0.1572(4)$	$0.1959(3)$	0.6900 (3)
C(37)	0.3477 (3)	$0.0412(2)$	$0.7977(2)$
$\mathrm{C}(38)$	0.4368 8(3)	0.0723 (2)	$0.7797(2)$
$\mathrm{C}(39)$	0.4528 (3)	$0.0225(3)$	0.7049 9(3)

in the scattering model but were not refined, each hydrogen atom being given an isotropic temperature factor 1.5 times that of the atom to which it was bonded.

All non-hydrogen atoms were then refined aniso-
tropically (a total of 397 variables) in two blocks and a weighting scheme of the form $w=1.6410 /\left[\sigma^{2}\left(F_{0}\right)+\right.$ $0.000306\left|F_{\mathrm{o}}\right|^{2}$] was applied. Refinement converged to $R 0.0405$ and R_{w}, defined as $\left(\Sigma w \Delta F^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right)^{\frac{1}{2}}, 0.0471$. The maximum shift/error at convergence was 0.004 and a final difference synthesis was essentially featureless and showed no peaks larger than $|0.4| \mathrm{e} \AA^{-3}$.

Final C, N, and Ni atomic parameters and their e.s.d. values are listed in Table l and the H co-ordinates in

Table 2
Hydrogen atom co-ordinates in (7) obtained from a difference synthesis

Atom ${ }^{\text {a }}$	x / a	y / b	z / c
$\mathrm{H}(1)[\mathrm{C}(2)]$	0.5182	-0.0476	0.9208
$\mathrm{H}(2)[\mathrm{C}(5)]$	0.6547	-0.1210	1.0011
$\mathrm{H}(3)[\mathrm{C}(5)]$	0.6975	-0.2001	1.0633
$\mathrm{H}(4)[\mathrm{C}(6)]$	0.7176	-0.2240	0.9256
$\mathrm{H}(5)[\mathrm{C}(6)]$	0.5688	-0.2409	0.8595
$\mathrm{H}(6)[\mathrm{C}(6)]$	0.6107	-0.2840	0.9283
$\mathrm{H}(7)[\mathrm{C}(8)]$	0.5539	-0.3227	1.1668
$\mathrm{H}(8)[\mathrm{C}(8)]$	0.6497	-0.3077	1.1218
$\mathrm{H}(9)$ [$\mathrm{C}(9)]$	0.5584	-0.3881	0.9989
$\mathrm{H}(10)[\mathrm{C}(9)]$	0.5720	-0.4535	1.0832
$\mathrm{H}(1)$ [C(9)]	0.4519	-0.3993	1.0289
$\mathrm{H}(12)[\mathrm{C}(11)]$	0.3840	-0.3154	1.1186
$\mathrm{H}(13)[\mathrm{C}(14)]$	0.2547	-0.3094	1.2815
$\mathrm{H}(14)[\mathrm{C}(14)]$	0.3494	-0.3235	1.2544
$\mathrm{H}(15)[\mathrm{C}(15)]$	0.3626	-0.1959	1.3444
$\mathrm{H}(16)[\mathrm{C}(15)]$	0.3625	-0.1654	1.2453
$\mathrm{H}(17)[\mathrm{C}(15)]$	0.2779	-0.1470	1.2781
$\mathrm{H}(18)[\mathrm{C}(16)]$	0.1472	-0.3960	1.1550
$\mathrm{H}(19)[\mathrm{C}(16)]$	0.2424	-0.4086	1.1351
$\mathrm{H}(20)[\mathrm{C}(17)]$	0.0380	-0.3378	0.9953
$\mathrm{H}(21)[\mathrm{C}(17)]$	0.0728	-0.4398	1.0030
$\mathrm{H}(22)[\mathrm{C}(17)]$	0.1183	-0.3653	0.9642
$\mathrm{H}(23)[\mathrm{C}(19)]$	0.0551	-0.2564	1.2158
$\mathrm{H}(24)[\mathrm{C}(20)]$	-0.0969	-0.1606	1.1405
$\mathrm{H}(25)[\mathrm{C}(21)]$	-0.1057	-0.0821	1.0195
$\mathrm{H}(26)[\mathrm{C}(26)]$	-0.2599	-0.0991	0.7662
$\mathrm{H}(27)[\mathrm{C}(26)]$	-0.1969	-0.1231	0.8729
$\mathrm{H}(28)[\mathrm{C}(27)]$	-0.2414	0.0341	0.8330
$\mathrm{H}(29)[\mathrm{C}(27)]$	-0.3161	-0.0247	0.8618
$\mathrm{H}(30)[\mathrm{C}(27)]$	-0.2004	0.0131	0.9358
$\mathrm{H}(31)[\mathrm{C}(29)]$	-0.1251	0.0475	0.6595
$\mathrm{H}(32)[\mathrm{C}(29)]$	-0.2210	0.0080	0.6791
$\mathrm{H}(33)[\mathrm{C}(30)]$	-0.1121	-0.0974	0.5916
$\mathrm{H}(34)[\mathrm{C}(30)]$	-0.2365	-0.0285	0.5443
$\mathrm{H}(35)[\mathrm{C}(30)]$	-0.2216	-0.0950	0.5434
$\mathrm{H}(36)$ [C(32)]	0.0417	0.0373	0.6962
$\mathrm{H}(37)[\mathrm{C}(35)]$	0.2449	0.1217	0.6328
$\mathrm{H}(38)[\mathrm{C}(35)]$	0.1348	0.0863	0.6154
$\mathrm{H}(39)[\mathrm{C}(36)]$	0.2212	0.2197	0.7318
$\mathrm{H}(40)[\mathrm{C}(36)]$	0.1427	0.2305	0.6361
$\mathrm{H}(41)$ [C(36)]	0.1092	0.1833	0.7077
$\mathrm{H}(42)[\mathrm{C}(38)]$	0.4235	0.1325	0.7598
$\mathrm{H}(43)$ [$\mathrm{C}(38)]$	0.4997	0.0739	0.8416
$\mathrm{H}(44)$ [$\mathrm{C}(39)]$	0.5111	0.0386	0.7025
$\mathrm{H}(45)[\mathrm{C}(39)]$	0.3819	0.0257	0.6429
$\mathrm{H}(46)[\mathrm{C}(39)]$	0.4655	-0.0365	0.7172

${ }^{a}$ Hydrogen atoms are labelled with the carbon atom to which they are attached in parentheses.

Table 2. Atomic scattering curves for $\mathrm{H}, \mathrm{C}, \mathrm{N}$, and N were taken from refs. 12 and 13 , with that for Ni modified for the real and imaginary anomalous dispersion
${ }^{12}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }_{13}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{14}$ D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.

Table 3
Interatomic distances (\AA) and angles (${ }^{\circ}$) in (7)

Intramolecular distances			
$\mathrm{Ni}-\mathrm{N}(1)$	1.937(3)	$\mathrm{C}(13)-\mathrm{C}(16)$	$1.546(5)$
$\mathrm{Ni}-\mathrm{N}(2)$	1.932(3)	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.495(5)$
$\mathrm{Ni}-\mathrm{N}(3)$	1.930(3)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.505(6)$
$\mathrm{Ni}-\mathrm{N}(4)$	1.953(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.509(6)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.376(5)$	$\mathrm{C}(18)-\mathrm{C}(19)$	1.363 (7)
$\mathrm{N}(1)-\mathrm{C}(33)$	$1.392(4)$	$\mathrm{C}(18)-\mathrm{C}(23)$	$1.401(5)$
$\mathrm{N}(2)-\mathrm{C}(3)$	1.393(5)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.395(6)
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.371(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	1.381 (6)
$\mathrm{N}(3)-\mathrm{C}(12)$	1.357(4)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.414(6)
$\mathrm{N}(3)-\mathrm{C}(23)$	1.400 (5)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.393(4)
$\mathrm{N}(4)-\mathrm{C}(24)$	$1.364(5)$	$\mathrm{C}(22)-\mathrm{C}(24)$	$1.425(5)$
$\mathrm{N}(4)-\mathrm{C}(31)$	$1.392(4)$	$\mathrm{C}(24)$ - $\mathrm{C}(25)$	1.440(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.385(4)$	$\mathrm{C}(25)-\mathrm{C}(26)$	1.495(6)
$\mathrm{C}(1)-\mathrm{C}(37)$	$1.435(5)$	$\mathrm{C}(25)-\mathrm{C}(28)$	1.363(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.355(5)$	$\mathrm{C}(26)-\mathrm{C}(27)$	1.525(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.450(4)$	$\mathrm{C}(28)-\mathrm{C}(29)$	1.499(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.495(6)$	$\mathrm{C}(28)$ - $\mathrm{C}(31)$	1.428(5)
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.348(5)$	$\mathrm{C}(29)-\mathrm{C}(30)$	1.514(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.510(8)$	$\mathrm{C}(31)-\mathrm{C}(32)$	1.364 (6)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.496(5)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.371(5)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.447(5)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.437 (6)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.523(6)	$\mathrm{C}(34)$ - $\mathrm{C}(35)$	1.506(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.384(6)$	$\mathrm{C}(34)-\mathrm{C}(37)$	1.360 (5)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.361 (6)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.507(7)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.515(6)$	$\mathrm{C}(37)-\mathrm{C}(38)$	1.495(6)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.535(4)	$\mathrm{C}(38)-\mathrm{C}(39)$	1.527(7)

Bond angles			
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(1)$	89.5(1)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(18)$	110.5(3)
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(1)$	91.0(1)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(12)$	110.9(3)
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(2)$	175.1(1)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(14)$	108.8(3)
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(1)$	176.7(1)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	114.8(3)
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(2)$	90.5(1)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(13)$	115.0(3)
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(4)$	89.3(1)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	121.6(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ni}$	128.6(2)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(23)$	107.9(4)
$\mathrm{C}(33)-\mathrm{N}(1)-\mathrm{Ni}$	127.1(2)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)$	130.5(3)
$\mathrm{C}(33)-\mathrm{N}(1)-\mathrm{C}(1)$	104.3(3)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	118.7(4)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Ni}$	128.3(2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120.1(5)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Ni}$	127.0(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	122.0(3)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(3)$	104.6(3)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(24)$	120.0(4)
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{Ni}$	127.7(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(24)$	123.6(3)
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{C}(23)$	105.8(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	116.2(3)
$\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{Ni}$	126.1(2)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{N}(3)$	112.5(3)
$\mathrm{C}(24)-\mathrm{N}(4)-\mathrm{Ni}$	130.1(2)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(3)$	126.7(3)
$\mathrm{C}(31)-\mathrm{N}(4)-\mathrm{Ni}$	124.1(3)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	120.7(4)
$\mathrm{C}(31)-\mathrm{N}(4)-\mathrm{C}(24)$	105.0(3)	$\mathrm{C}(22)-\mathrm{C}(24)-\mathrm{N}(4)$	122.7(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	123.7(3)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{N}(4)$	$111.2(3)$
$\mathrm{C}(37)-\mathrm{C}(1)-\mathrm{N}(1)$	$111.5(3)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(22)$	126.0(4)
$\mathrm{C}(37)-\mathrm{C}(1)-\mathrm{C}(2)$	124.2(4)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	129.0(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	124.1(4)	$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{C}(24)$	106.1(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	$124.5(3)$	$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{C}(26)$	124.6(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)$	110.3(3)	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	114.8(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	125.3(4)	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{C}(31)$	107.3(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.0(3)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(31)$	124.8(4)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	107.1(3)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(25)$	127.9(4)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	127.8(3)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	111.4(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	112.5(3)	$\mathrm{C}(28)-\mathrm{C}(31)-\mathrm{N}(4)$	110.1(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(4)$	129.1(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{N}(4)$	124.4(3)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(4)$	106.6(3)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(28)$	124.7(3)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	124.3(4)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	125.2(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	113.3(3)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{N}(1)$	123.5(3)
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{N}(2)$	111.4(3)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{N}(1)$	$110.8(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)$	124.3(3)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	125.6(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(7)$	123.9(3)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	125.2(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	123.6(3)	$\mathrm{C}(37)-\mathrm{C}(34)-\mathrm{C}(33)$	106.8(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(3)$	125.1(4)	$\mathrm{C}(37)-\mathrm{C}(34)-\mathrm{C}(35)$	127.9(4)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{N}(3)$	113.4(3)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	115.0(4)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	121.4(3)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(1)$	125.5(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	100.1 (3)	$\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{C}(1)$	106.6(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	113.7(3)	$\mathrm{C}(34)-\mathrm{C}(37)-\mathrm{C}(38)$	127.7(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	112.7(3)	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	112.2(3)

corrections. ${ }^{14}$ All computations were performed on the Atlas computer laboratory's ICL 1906A computer. Observed and calculated structure factors together with
the thermal parameters are available as Supplementary Publication No. 22369 (15 pp .).*

DISCUSSION

Interatomic distances, angles, and e.s.d.s are given in Table 3, and the molecular geometry and atom numbering are shown in Figure 1. The four $\mathrm{Ni}-\mathrm{N}$ bond distances show considerable variation, from $1.930(3)$ to $1.953(3)$ \AA. The $\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$ and $\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(4)$ angles are significantly different from $180^{\circ}\left[175.1(1), 176.7(1)^{\circ}\right]$, and indicate a small distortion away from the normal square-planar nickel co-ordination generally observed in nickel(II) porphyrin complexes. ${ }^{15-18}$ A mean plane through the four nitrogen atoms confirms the lack of planarity within the co-ordination group (Table 4), and

Figure 1 ORTEP drawing showing the atom numbering and molecular geometry of (7) with $\mathbf{3 5} \%$ thermal ellipsoids
the deviations of the nitrogen atoms from the mean plane suggest a departure from square planarity about the nickel atom. Each of the four five-membered rings is essentially planar, as too is the benzene ring (Table 5), with the two five-membered rings nearest to the benzene ring showing the larger deviations from planarity. The bond distances and angles of rings B, C, and D in (7) and the associated porphin skeleton are similar to those usually found in metalloporphyrin complexes, ${ }^{18,19}$ whereas in the remaining five-membered ring, the bond lengths and angles reflect the loss of conjugation.

It is of interest to compare the present structure with those of the two forms of octaethylporphinatonickel(ir) (NiOPE). The tetragonal form of NiOEP ${ }^{17}$ is largely distorted from planarity and has an $\mathrm{Ni}-\mathrm{N}$ distance of $1.929(3) \AA$ which is very short for a metalloporphyrin.

[^4]The triclinic form of NiOEP ${ }^{18}$ is essentially planar (the angle between planes of adjacent pyrrole rings is 2.1°

Table 4
Distances (\AA) from the mean planes passing through (a) the four pyrrole nitrogen atoms $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{N}(4)$; (b) the five carbon atoms $\mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(15), \mathrm{C}(16)$, C(17)
$N(1)$
$N(2)$
$N(3)$
$N(4)$
Ni
(a)
(i) Distances (\AA) of atoms from the mean planes passing through the five-membered rings and benzene ring, and (ii) angles between the normals to these means planes and the mean plane (6) through the co-ordination atoms $[\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{N}(4)]$.
(i) Deviations from mean planes
(a) Plane 1: N(1), C(1), C(37), C(34), C(33)

$\mathrm{N}(1)$	-0.011
$\mathrm{C}(1)$	0.014
$\mathrm{C}(37)$	-0.012
$\mathrm{C}(34)$	0.006
$\mathrm{C}(33)$	0.003

(b) Plane 2: $\mathrm{N}(2), \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(7), \mathrm{C}(10)$

$\mathrm{N}(2)$	0.006
$\mathrm{C}(3)$	0.001
$\mathrm{C}(4)$	-0.008
$\mathrm{C}(7)$	0.011
$\mathrm{C}(10)$	-0.010

(c) Plane 3: $\mathrm{N}(3), \mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(18), \mathrm{C}(23)$

$\mathrm{N}(3)$	-0.007
$\mathrm{C}(12)$	-0.014
$\mathrm{C}(13)$	0.028
$\mathrm{C}(18)$	-0.034
$\mathrm{C}(23)$	0.028

(d) Plane 4: $\mathrm{N}(4), \mathrm{C}(24), \mathrm{C}(25), \mathrm{C}(28), \mathrm{C}(31)$

$\mathrm{N}(4)$	0.027
$\mathrm{C}(24)$	-0.018
$\mathrm{C}(25)$	0.001
$\mathrm{C}(28)$	0.016
$\mathrm{C}(31)$	-0.026

(e) Plane 5: $\mathrm{C}(18), \mathrm{C}(19), \mathrm{C}(20), \mathrm{C}(21), \mathrm{C}(22), \mathrm{C}(23)$

$\mathrm{C}(18)$	0.013
$\mathrm{C}(19)$	0.029
$\mathrm{C}(20)$	-0.031
$\mathrm{C}(21)$	-0.008
$\mathrm{C}(22)$	0.049
$\mathrm{C}(23)$	-0.052

(ii) Dihedral angles

Planes	Angle $\left({ }^{\circ}\right)$	Planes	Angle $\left({ }^{\circ}\right)$
1,6	10.8	1,4	18.0
2,6	11.4	1,5	27.4
3,6	15.8	2,3	19.8
4,6	20.6	2,4	31.8
5,6	17.8	2,5	24.0
1,2	17.6	3,4	28.1
1,3	26.3	3,5	5.2
		4,5	25.6

compared with an angle of 32.8° in the tetragonal form) and has an $\mathrm{Ni}-\mathrm{N}$ distance of $1.958(2) \AA$. In both forms

[^5]the nickel atom has square-planar co-ordination. As observed in the tetragonal form of NiOEP, and in contrast to the essentially planar metalloporphyrin structures usually observed, the present structure determination of (7) shows the macrocyclic ligand to be severely non-planar. This is evident from the side-view of the molecule shown in Figure 2. The angles between normals to mean planes through the five-membered rings and benzene ring and the mean N_{4} co-ordination plane are given in Table 5.

Three of the $\mathrm{Ni}-\mathrm{N}$ bond lengths in (7) [1.930(3), $1.932(3)$, and $1.937(3) \AA$] are comparable to the relatively short $\mathrm{Ni}-\mathrm{N}$ (porphyrin) distance of $1.929(3) \AA$ found in tetragonal NiOEP , and it can be postulated that the deformation of the macrocycle of (7) from planarity is necessary to decrease the $\mathrm{Ni}-\mathrm{N}$ bond lengths. The normal radius of the cavity in an undistorted metalloporphyrin has been estimated to be $2.01 \AA \AA^{20}$ whereas the usual $\mathrm{Ni}-\mathrm{N}$ bond length found in diamagnetic nickel(II) square-planar complexes is $c a .1 .85 \AA_{\AA^{21}}$ Hence, the porphinato-core must contract from the ideal situation to accommodate a low-spin nickel(II) atom. It has been postulated ${ }^{19,20}$ that $1.96 \AA$ is the smallest radius the porphyrin cavity may have in a planar structure and this is supported by experimental results; in triclinic $\mathrm{NiOEP},{ }^{18}$ the $\mathrm{Ni}-\mathrm{N}$ distance is $1.958(2) \AA$, in nickel(II) 2,4-diacetyldeuteroporphyrin-IX dimethyl ester ${ }^{16}$ the $\mathrm{Ni}-\mathrm{N}$ distance is $1.960(8) \AA$, in nickel(II) aetioporphyrin I^{15} the $\mathrm{Ni}-\mathrm{N}$ distance is $1.957(13) \AA$, and all three compounds are essentially planar. In the cases where $\mathrm{Ni}-\mathrm{N}$ distances significantly less than $1.96 \AA$ are observed, in tetragonal NiOPE and in the present study of (9), as well as in three nickel(II) complexes of porphyrin-derived macrocyclic ligands [in 5,15-dimethyl-5,15-dihydrooctapthylporphinatonickel(II) ${ }^{22}$ with average $\mathrm{Ni}^{-} \mathrm{N}=$ $1.908(6) \AA$, and in two homoporphyrin nickel(II) complexes with average $\mathrm{Ni}-\mathrm{N}=1.879(4) \AA{ }^{23}$ and with $\mathrm{Ni}-\mathrm{N}$ $=1.886(4) \AA$ (average of three distances, fourth $\mathrm{Ni}-\mathrm{N}$ distance $\left.=1.961(3) \AA)^{24}\right]$, the macrocyclic ligands adopt severely nonplanar structures.

However, nonplanar porphyrin structures are also encountered in compounds in which there is no requirement to decrease the $\mathrm{M}-\mathrm{N}$ distance (where M represents the centre of the porphyrin cavity) from the ideal $2.01 \AA$; for example in the tetragonal form of the free base $5,10,15,20$-tetraphenylporphyrin $\left(\mathrm{H}_{2} \mathrm{TPP}\right)^{25}$ and in the square-planar copper(II) complex CuTPP ${ }^{26}$ [the copper(II) atom is able to occupy the porphyrin cavity with $\mathrm{Cu}-\mathrm{N}$ distances very close to the optimum $2.01 \AA$ for undistorted acconımodation, as seen in the average $\mathrm{Cu}-\mathrm{N}$ distance of $2.000(5) \AA$ in the essentially planar structure of copper(II) 5,10,15,20-tetra-n-propylporphyrin ${ }^{27}$]. Hence it appears that packing forces also play an im-

[^6]portant role in determining the planar/nonplanar structures of the macrocyclic ligands. In tetragonal NiOEP, ${ }^{17}$ the nonplanarity is attributed to both intermolecular close contacts which would cause considerable strain in a reasonably dense planar structure and to the relief of strain caused by the small size of the nickel(ir) atom. Similarly, in the present study, the nonplanarity of the ligand in (7) is probably a result of packing forces as well as strain caused by contraction of the co-ordination group due to the relatively small nickel(ir) atom. Selected intramolecular contacts, together with all significant intermolecular contact distances involving non-hydrogen atoms are given in Table 6, and each intermolecular

Figure 2 ORTEP drawing of (7) showing distortions of the porphyrin ligand from planarity and the conformations of the terminal ethyl groups (thermal ellipsoids are drawn for $\mathbf{3 5} \%$ probability)
contact is seen to involve a methylene or methyl carbon atom of a terminal ethyl group.

Table 6
(i) Selected intramolecular contacts (\AA)

$\mathrm{N}(1) \cdots \mathrm{N}(3)$	3.864	$\mathrm{Ni} \cdots \mathrm{C}(2)$	3.381
$\mathrm{~N}(2) \cdots \mathrm{N}(4)$	3.882	$\mathrm{Ni} \cdots \mathrm{C}(11)$	3.348
$\mathrm{~N}(1) \cdots \mathrm{N}(2)$	2.723	$\mathrm{Ni} \cdots \mathrm{C}(22)$	3.414
$\mathrm{~N}(1) \cdots \mathrm{N}(4)$	2.775	$\mathrm{Ni} \cdots \mathrm{C}(32)$	3.344
$\mathrm{~N}(2) \cdots \mathrm{N}(3)$	2.741		
$\mathrm{~N}(3) \cdots \mathrm{N}(4)$	2.729		

(ii) Intermolecular contacts (\AA) within the limits of the contact radii: $\mathrm{Ni}, 2.1 \AA ; \mathrm{C}, \mathrm{N}, 1.9 \AA{ }^{a}$

$\mathrm{C}(36)$	$\mathrm{C}(26)^{\text {I }}$	3.749
C(9).	$\mathrm{C}(39)^{\text {II }}$	3.734
C(14)	- $\mathrm{Ni}^{\text {III }}$	3.942
C(14)	$\cdot \mathrm{N}(1)^{\mathrm{II}}$	3.636
C(14)	- $\mathrm{N}(2)^{\text {II }}$	3.587
C(14)	. $\mathrm{C}(1)^{\mathrm{II}}$	3.714
C(14)	- $\mathrm{C}(2)^{11}$	3.694
C(14)	- $\mathrm{C}(3)^{\text {II }}$	3.561
C(16)	- $\mathrm{C}(32)^{\text {II }}$	3.766
C(16)	- $\mathrm{C}(33)^{\text {L }}$	3.520
C(16)	- $\mathrm{C}(34)^{\text {II }}$	3.638

${ }^{a}$ Roman numeral superscripts refer to the following coordinate transformations:

$$
\text { I }-x, \frac{1}{2}+y, 1 \frac{1}{2}-z \quad \text { II } x, 1 \frac{1}{2}-y, \frac{1}{2}+z
$$

As seen from Figure 2, the carbon atoms of the gemdiethyl group attached to $\mathrm{C}(13)$ are essentially planar

[^7](Table 4), the angle between the normals to this mean plane $[\mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(15), \mathrm{C}(16), \mathrm{C}(17)]$ and to the mean co-ordination plane $[\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{N}(4)]$ being 72.7°.

EXPERIMENTAL

N.m.r. spectra were measured for solutions in $\left[{ }^{2} \mathrm{H}\right]$ chloroform and u.v.-visible spectra for solutions in chloroform (except where otherwise stated) with instruments listed in the earlier paper. ${ }^{2}$ Mass spectra were determined with an A.E.I. MS30 instrument by direct insertion into the ion source.

Nickel meso- α-Hydroxybenzylaetioporphyrin I (ld).-Allyl triphenylphosphonium chloride (55 mg) was treated with phenyl-lithium (0.042 ml of 3 m in ether) under nitrogen in tetrahydrofuran (25 ml ; dried over LiAlH_{4}). After 20 min, solid nickel meso-formylaetioporphyrin I (47.5 mg) was added and the mixture stirred at room temperature for 18 h . Water (10 ml) and benzene (30 ml) were added and the organic layer separated, dried, and chromatographed on alumina using 20% chloroform-light petroleum for elution. The main band was separated, the solvent removed, and the residue crystallised from dichloromethanemethanol to give the product as red-violet crystals (11 mg , 20%), m.p. $193-195{ }^{\circ} \mathrm{C}$ (Found: C, $73.2 ; \mathrm{H}, 6.1 ; \mathrm{N}, 9.0$. $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NiO}$ requires $\mathrm{C}, 73.0 ; \mathrm{H}, 6.5 ; \mathrm{N}, 8.75 \%$), $m / e 640$ $\left(M^{+}\right), \lambda 346,408,536$, and $578 \mathrm{~mm}(\varepsilon 15300,162880$, 9130 , and 15055 respectively); $\delta_{\mathrm{H}} 1.67\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), 3.27, 3.32, and 3.35 (all $\mathrm{s}, 1: 1: 2$, peripheral $\mathrm{Me}), 3.45$ (s, OH, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), ($\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), $6.50(\mathrm{~m}$, phenyl H's), 7.69 br (s , benzyl H), and 9.41 ($\mathrm{s}, 3$ meso-H).
meso-(β-Methoxycarbonylvinyl)OEP (20).--The nickel complex (2i) was prepared following Callot ${ }^{4}$ from nickel meso-formylOEP (2a) and methoxycarbonylmethylene(triphenyl)phosphorane. The product (2i) (100 mg) was stirred in concentrated sulphuric acid (5 ml) at room temperature for 2 h and then poured into ice-water and neutralised with sodium hydrogen carbonate. The porphyrin-free base was extracted into chloroform, the extract dried, and the solvent evaporated. The residue was chromatographed on alumina, using 20% hexane-chloroform for elution. The major red fraction was collected, evaporated, and the product crystallised from dichloromethanemethanol as red needles, m.p. $208-210^{\circ} \mathrm{C}$ ($78 \mathrm{mg}, 85 \%$) (Found: N, 9.05. $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{N}, 9.05 \%$). Carbon values for this compound were consistently low; $\lambda_{\text {max. }}$ $408,509,542,579$, and $631 \mathrm{~nm}(\varepsilon 145000,11300,6200,5700$, and 2400 respectively); $\delta_{H}-3.1 \mathrm{br}(\mathrm{NH}), 1.66,1.82$, and 1.87 (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 3.93 (s, ester CH_{3}), $4.0\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), $6.18(\mathrm{~d}, J=15 \mathrm{~Hz}$, $\alpha-\mathrm{H}$ of acrylic ester), 9.89 and 10.05 (both s, $1: 2$, meso-H), and $10.38\left(\mathrm{~d}, J=15 \mathrm{~Hz}, \beta-\mathrm{H}\right.$ of acrylic ester) ; $\nu_{\text {max. }} 1640$ $(\mathrm{C}=\mathrm{C})$ and $1721 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
meso-(β-Methoxycarbonyvinyl)aetioporphyrin I (ld) and the Nickel Complex (le).-A solution of nickel meso-formylaetioporphyrin $I^{1}(300 \mathrm{mg})$ and methoxycarbonylmethylene(triphenyl)phosphorane (800 mg) in xylene (24 ml) was heated under reflux for 18 h . The product was cooled and then chromatographed on silica using benzene for elution. A small fraction of nickel aetioporphyrin I was eluted first and was followed by the main band which was collected. After removal of solvent in vacuo, the residue was crystallised from dichloromethane-methanol when the product (ld) was obtained as small brown needles, m.p. 235-
$236{ }^{\circ} \mathrm{C}(225 \mathrm{mg}, 68 \%)$ (Found: C, 69.5; H, 6.55; N, 9.0. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NiO}_{2}$ requires $\mathrm{C}, 69.8 ; \mathrm{H}, 6.5 ; \mathrm{N}, 9.05 \%$), $\lambda_{\text {max. }} 404$, 530 , and $566 \mathrm{~nm}(\varepsilon 121338,9415$, and 13390$)$; $\nu_{\text {max. }}(\mathrm{KBr})$ $1730 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 1.68\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et$), 3.28,3.30$, and 3.35 (all $\mathrm{s}, 1: 1: 2$, peripheral Me), $3.80\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), 3.83 (s, ester CH_{3}), 5.26 ($\mathrm{d}, \beta-\mathrm{H}$ of acrylic ester, $J=15.5 \mathrm{~Hz}), 9.48(\mathrm{~s}, 3$ meso- H$)$, and $10.20(\mathrm{~d}, \alpha-\mathrm{H}$ of acrylic ester, $J=15.5 \mathrm{~Hz}$).

A solution of the nickel complex (50 mg) was dissolved in concentrated sulphuric acid (3 ml) and kept for 1 h at room temperature. The solution was then poured into cold chloroform and neutralised with saturated aqueous sodium hydrogen carbonate. The chloroform layer was separated and the aqueous layer extracted with more chloroform. The combined chloroform extracts were washed and dried and the solvent removed. The residue was purified by chromatography on silica plates using 70% light petroleumchloroform for elution. Crystallisation of the product from dichloromethane-methanol gave the product (le) as small brown needles ($24 \mathrm{mg}, 99 \%$), m.p. $253-255{ }^{\circ} \mathrm{C}$ (Found: C , $76.75 ; \mathrm{H}, 7.3 ; \mathrm{N}, 9.95 . \quad \mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C , 76.85 ; $\mathrm{H}, 7.5 ; \mathrm{N}, 9.95 \%)$, $\nu_{\max .}(\mathrm{KBr}) 1730 \mathrm{~cm}^{-1} ; \lambda .406,506,540$, 576 , and $630 \mathrm{~nm}(\varepsilon 121480,9860,5100,4750$, and 1580); $\delta_{\mathrm{H}}-3.1 \mathrm{br}(\mathrm{s}, \mathrm{NH}), 1.70\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et$), \mathbf{3 . 4 5}$, 3.48 , and 3.50 (all s, $1: 1: 2$ peripheral CH_{3}), $3.89\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), $3.93\left(\mathrm{~s}\right.$, ester CH_{3}), 6.18 (d, $\beta \mathrm{H}$ of acrylic ester, $J=15 \mathrm{~Hz}), 9.80(\mathrm{~s}, 1$ meso-H), $9.98(\mathrm{~s}, 2$ meso- H$)$, and $10.34(\mathrm{~d}, \alpha-\mathrm{H}$ of acrylic ester, $J=15 \mathrm{~Hz})$.
meso-(4-Methoxycarbonylbuta-1,3-dienyl)aetioporphyrin I and its Nickel Complex (lf).-A solution of nickel mesoformylaetioporphyrin I (150 mg) and the phosphorane (384 mg) derived from triphenylphosphine and methyl γ bromocrotonate in xylene $(12 \mathrm{ml})$ was heated under reflux for 15 h . The product was cooled and chromatographed on silica using benzene for elution. A minor fraction of nickel aetioporphyrin I was eluted first and the main fraction was then collected. After removal of the solvent in vacuo, the residue was crystallised from dichloromethane-methanol when the product (lf) was obtained as small brown crystals, m.p. $214^{\circ} \mathrm{C}(82.5 \mathrm{mg}, 50 \%$) (Found: C, $70.25 ; \mathrm{H}, 6.8$; N, 8.6. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NiO}_{2}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}, 6.55 ; \mathrm{N}, 8.65 \%$), $\lambda_{\max }$. 404,533 , and $563 \mathrm{~nm}(\varepsilon 69120,6530$, and 9220$), m / e 644$ $\left(M^{+}\right)$; $\nu_{\text {max. }}(\mathrm{KBr}) 1720 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 1.66\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), 3.20,3.27, and 3.29 (all s, $1: 1: 2$, peripheral CH_{3}), 3.68 ($\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), 3.70 (s, ester CH_{3}), 5.51 (dd, $\beta-\mathrm{H}$ of meso-butadienyl chain, $J_{\alpha H-\beta H} 14.5 \mathrm{~Hz}$), $5.68(\mathrm{~d}, \delta-\mathrm{H}$ of meso-butadienyl chain, $J_{\gamma \mathrm{H}-\delta \mathrm{H}} 16 \mathrm{~Hz}$), 7.80 (dd, $\gamma-\mathrm{H}$ of meso-butadienyl chain, $J_{\beta \mathrm{H}-\gamma \mathrm{H}} 11 \mathrm{~Hz}$), 9.10 (d, $\alpha-\mathrm{H}$ of mesobutadienyl chain, $\left.J_{\alpha \mathrm{H}-\beta \mathrm{H}} 14.5 \mathrm{~Hz}\right)$, and $9.40(\mathrm{~s}, 3$ mesoH).

The above nickel complex (45 mg) was dissolved in concentrated sulphuric acid (3 ml) and kept at room temperature for 1 h . The acid solution was then poured slowly onto ice and chloroform and cautiously neutralised with saturated aqueous sodium hydrogen carbonate. The chloroform layer was separated, washed, dried, and the solvent removed under reduced pressure. The residue was chromatographed on silica plates using 30% chloroformlight petroleum for elution. After removal of the solvent from the main fraction, the residue was crystallised from dichloromethane-methanol when it formed small brown needles ($38 \mathrm{mg}, 93 \%$) (Found: C, $77.2 ; \mathrm{H}, 7.4 ; \mathrm{N}, 9.55$. $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.5 ; \mathrm{H}, 7.55 ; \mathrm{N}, 9.5 \%$), $m / e 590$ $\left(M^{+}\right) ; v_{\text {max. }}(\mathrm{KBr}) 1720 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}-3.2 \mathrm{br}(\mathrm{s}, \mathrm{NH}), 1.72\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), $3.52,3.55$, and 3.58 (all s, $1: 1: 2$, peri-
pheral CH_{3}), 3.82 (s, ester CH_{3}), $3.92\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), 5.93 (d, $\delta-\mathrm{H}$ of meso-butadienyl chain, $J_{\gamma \mathrm{H}-\delta \mathrm{H}}=16 \mathrm{~Hz}$), 6.49 (dd, β-H of meso-butadienyl chain, $J_{\alpha \mathrm{H}-\beta \mathrm{H}} 14 \mathrm{~Hz}$), 8.03 (dd, $\gamma-\mathrm{H}$ of meso-butadienyl chain, $J_{\beta \mathrm{H}-\gamma \mathrm{H}} 11 \mathrm{~Hz}$), 9.51 (d, $\alpha-\mathrm{H}$ of meso-butadienyl chain, $J_{\alpha \mathrm{H}-\beta \mathrm{H}} 14 \mathrm{~Hz}$), and 9.83 and 9.90 (both s, 1:2, 3 meso-H).

Nickel meso-(4-Formylbuta-1,3-dienyl)aetioporphyrin I (lg).--The nickel complex (lf) (50 mg) in dry tetrahydrofuran (12 ml) was treated with aluminium hydride in tetrahydrofuran (1 ml) [prepared from $\mathrm{LiAlH}_{4}(12 \mathrm{mg})$ and AlCl_{3} (10.3 mg) in tetrahydrofuran (2.4 ml)] in an atmosphere of nitrogen and the mixture stirred for 30 min . The product was treated with ether (10 ml) containing water $(0.5 \mathrm{ml})$ and the organic layer was separated, dried, and the solvent removed. The product was chromatographed on alumina using 30% light petroleum-chloroform for elution. The main faction was separated, the solvent removed, and the residue crystallised to give the product as dark reddish green needles, m.p. $210-211^{\circ} \mathrm{C}$ ($14 \mathrm{mg}, \mathbf{2 7 \%}$) (Found: C, 71.8; $\mathrm{H}, 6.5 ; \mathrm{N}, 9.05 . \mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{SiO}$ requires C, 72.2; H, 6.55; $\mathrm{N}, 9.1 \%), m / e 614\left(M^{+}\right) ; v_{\text {max. }}(\mathrm{KBr}) 1675 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 400$, 430,566 , and $594 \mathrm{~nm}(\varepsilon 46530,35790,7340$, and 6800 respectively).

Nickel meso-Vinylaetioporphyrin I (1h).-Methyltriphenylphosphonium iodide (510 mg) was treated with phenyl-lithium (0.4 ml of 3 m -ethereal solution) in dry tetrahydrofuran (50 ml) in an atmosphere of nitrogen. After stirring for 10 min , solid meso-formylacetioporphyrin I (200 mg) was added and the stirring continued for 18 h . Water $(20 \mathrm{ml})$ was added followed by benzene $(20 \mathrm{ml})$ and the organic layer was separated, washed, dried, and the solvent removed under reduced pressure. The residue was chromatographed on alumina using 20% chloroform-light petroleum for elution. The main fraction was separated, the solvent removed, and the residue crystallised from dichloro-methane-methanol when the product ($140 \mathrm{mg}, 70 \%$) was obtained as long dark red needles (Found: C, 72.6; H, 6.8; $\mathrm{N}, 10.0 . \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{Ni}$ requires C, $72.75 ; \mathrm{H}, 6.8 ; \mathrm{N}, 10.0 \%$), $m / e 560\left(M^{+}\right)$; $\lambda_{\text {max. }} 404,530$, and $566 \mathrm{~nm}(\varepsilon 160110,10510$, and 16340 respectively), $\delta_{\mathrm{H}} 1.67\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), $3.23,3.27$, and 3.30 (all s, 1:1:2, peripheral CH_{3}), $3.78(\mathrm{q}$, CH_{2} of peripheral Et), 4.5 (dd, trans $-\beta-\mathrm{H}$ of vinyl), 5.78 (dd, cis- β-H of vinyl), 9.02 (dd, $\alpha-\mathrm{H}$ of vinyl; $J_{\text {trans }} 19 \mathrm{~Hz}, J_{c i s}$ $10.5 \mathrm{~Hz}, J_{g e m} 2 \mathrm{~Hz}$), and $9.47(\mathrm{~s}, 3$ meso-H).

Nickel meso-PropenylOEP (2j).-Ethyltriphenylphosphonium iodide (240 mg) was dissolved in dry tetrahydrofuran (30 ml) and phenyl-lithium (0.19 ml of a $3 \mathrm{~m}-$ solution in ether) was added under nitrogen. After the mixture had been stirred for 10 min , solid nickel mesoformylOEP (2a) (120 mg) was added and the stirring continued overnight in an atmosphere of nitrogen; the mixture was then worked up in the usual manner. After removal of the organic solvent the residue was chromatographed on alumina using 30% hexane-chloroform for elution. The main red fraction was separated, the solvent removed, and the residue crystallised from dichloromethane-methanol to give the product as dark red needles, m.p. $275-277{ }^{\circ} \mathrm{C}(54$ $\mathrm{mg}, 44 \%$) identical in all respects with the product prepared earlier ${ }^{3}$ from (2a) and triethyl phosphite.

Nickel meso-StyrylOEP (2 k).-Benzyl(triphenyl)phosphonium chloride (230 mg) was dissolved in dry tetrahydrofuran (30 ml) under nitrogen and phenyl-lithium (0.2 ml of a 3 m solution in ether) was added and the mixture stirred for 10 min . Solid nickel meso-formylOEP (120 mg) was then added to the orange ylide solution and after being
stirred overnight in an atmosphere of nitrogen, the mixture was worked up in the usual manner. The residue from the organic extract after removal of solvent was chromatographed on alumina and eluted with 30% hexane-chloroform. The major red fraction was separated, solvent removed, and the residue crystallised from dichloro-methane-methanol to yield the product as shining red prisms, m.p. $250-252{ }^{\circ} \mathrm{C}$ ($66 \mathrm{mg}, 49 \%$) (Found: C, 76.5 ; $\mathrm{H}, 7.5$; $\mathrm{N}, 8.25 . \quad \mathrm{C}_{44} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{Ni}$ requires $\mathrm{C}, 76.2$; $\mathrm{H}, 7.25$; $\mathrm{N}, 8.1 \%$) ; $\lambda_{\text {max. }} 335,407,532$, and $568 \mathrm{~nm}(\varepsilon 16700,154000$, 11800 , and 16740); $\delta_{\mathrm{H}} 1.62-1.73$ (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 3.77 ($\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), 5.66 (d, $J=16.5 \mathrm{~Hz}$, styryl $\beta-\mathrm{H}), 7.15-7.55(\mathrm{~m}, 5 \mathrm{H}$, phenyl H$)$, $9.35(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, styryl $\alpha-\mathrm{H}$), and 9.36 and 9.38 (both s, $1: 2$, meso-H).

Nickel meso-Styrylaetioporphyrin I (1i).-TThis compound was prepared similarly from nickel meso-formylaetioporphyrin I (la) (80 mg) and benzyltriphenylphosphonium chloride (55 mg). The residue from the organic extract after removal of solvent was chromatographed on silica plates using 90% light petroleum-chloroform for elution. The solvent was removed and the residue crystallised from dichloromethane-methanol when the product was obtained as red needles, m.p. $213-215^{\circ} \mathrm{C}(53 \mathrm{mg}, 59 \%$) (Found: C, $75.15 ; \mathrm{H}, 6.55 ; \mathrm{N}, 8.7 . \quad \mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{Ni}$ requires $\mathrm{C}, 75.35$; $\mathrm{H}, 6.65 ; \mathrm{N}, 8.8 \%), m / e 636\left(M^{+}\right)$; $\lambda_{\text {max. }} 405,528$, and 566 $\mathrm{nm}(\varepsilon 123290,8450$, and 12780$)$; $v_{\text {max. }} 1600$ and $1500 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 1.68\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), $3.25,3.31$, and 3.36 (all s, $1: 1: 2$, peripheral $\left.\mathrm{CH}_{3}\right), 3.8\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et$)$, 5.68 (d, $J=15 \mathrm{~Hz}$, styryl $\beta-\mathrm{H}$), 7.42 (m, phenyl H), 9.38 (d, $J=15 \mathrm{~Hz}$, styryl $\alpha-\mathrm{H}$), and 9.48 (s, 3 meso H).

Nickel meso-p-Methylstyrylaetioporphyrin I (1j).--This compound was prepared as above from (la) (100 mg) and p-methylbenzyl(triphenyl)phosphonium chloride (326 mg), the product was purified by chromatography on alumina using 70% light petroleum-chloroform for elution. After removal of solvent from the main fraction, the residue was rystallised from dichloromethane-methanol when it formed small red needles, m.p. $259-260{ }^{\circ} \mathrm{C}(81 \mathrm{mg}, 70 \%)$ (Found: C, 75.65; H, 6.45; N, 8.6. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{Ni}$ requires C, $75.6 ; \mathrm{H}, 6.8 ; \mathrm{N}, 8.6 \%$), $\lambda_{\text {max. }} 404,530$, and $564 \mathrm{~nm}(\varepsilon$ 128310,9570 , and 13645 respectively) ; $\delta_{\mathrm{H}} 1.67\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), 2.38 (s, p-tolyl CH_{3}), 3.25, 3.32, and 3.36 (all s, $1: 1: 2$, peripheral $\left.\mathrm{CH}_{3}\right), 3.79\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), 5.65 (d, $J==15.5 \mathrm{~Hz}$, styryl $\beta-\mathrm{H}$), $7.40(\mathrm{~m}$, phenyl H$)$, $9.38(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, styryl $\alpha-\mathrm{H}$), and 9.52 (s, 3 mesoH).

Nickel 5-(β-Formylvinyl)OEP (21) and 10-(5) and 15-Formyl Derivatives.-Phosphorus oxychloride (2.5 ml) was added dropwise with stirring to dry $N N$-dimethylformamide $(1.8 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture kept at room temperature for 30 min , when a solution of nickel meso-vinylOEP (2 h) $(180 \mathrm{mg})$ in dry dichloroethane (40 ml) was added during 5 min ; the colour of the solution changed rapidly from red to green. The mixture was stirred for 10 min and then saturated aqueous sodium acetate (40 ml) was added to it and the stirring continued for a further 15 min . The organic layer was separated, washed with water, dried, and evaporated. The residue was chromatographed on alumina using 40% hexane-chloroform and the major green fraction was collected, the solvent removed, and the residue crystallised from dichloromethane-methanol to give dark green needles, m.p. $240-243{ }^{\circ} \mathrm{C}$ ($150 \mathrm{mg}, 80 \%$) (Found: C, 72.55; H, 7.1; $\mathrm{N}, 9.0 . \mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NiO}$ requires $\mathrm{C}, 72.55 ; \mathrm{H}, 7.2 ; \mathrm{N}, 8.7 \%$), $\lambda_{\text {max. }} 337,409,434,540 \mathrm{sh}, 571$, and 602 sh nm ($\varepsilon 16540,62200$,
$63300,6390,9660$, and 7560 respectively); $\delta_{\mathrm{H}} 1.60-1.62$ (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), $3.50-3.69$ (overlapping $\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), 5.43 (dd, $\beta-\mathrm{H}$ of acrylaldehyde), $9.30(\mathrm{~s}, 3$ meso -H$), 9.63(\mathrm{~d}, \alpha-\mathrm{H}$ of acrylaldehyde, $J=16 \mathrm{~Hz}$), and $9.78\left(\mathrm{~d}\right.$, formyl $\mathrm{H}, J=8 \mathrm{~Hz}$); $\nu_{\text {max. }} 1670$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Following the major green band on the chromatogram there were two other green bands which were separated and purified further by preparative t.l.c. on silica-gel plates using 30% hexane-chloroform for elution. The less polar component was separated and crystallised from dichloro-methane-methanol as shining dark green needles $(10 \mathrm{mg}$, 5%), m.p. $217-219^{\circ} \mathrm{C}$ (Found: C, 71.55 ; H, 7.2; N, 8.3. $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NiO}_{2}$ requires C, $71.35 ; \mathrm{H}, 6.9 ; \mathrm{N}, 8.3 \%$), $\lambda_{\text {max. }} 338 \mathrm{br}$, 441, and 660 br nm ($\varepsilon 15490,65730$, and 9750 respectively); $\delta_{\mathrm{H}} 1.44-1.58$ (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 3.48 3.51 (overlapping q, CH_{2} of peripheral E 1), 5.48 (dd, $\beta-\mathrm{H}$ of acrylaldehyde), 8.95 and 9.00 (both s, 2 meso-H), 9.45 (d, $\alpha-\mathrm{H}$ of acrylaldehyde, $J=16 \mathrm{~Hz}$), 9.78 (d, formyl-H, $J=8 \mathrm{~Hz}$), and $11.60(\mathrm{~s}, 15$-formyl H). The more polar component was purified similarly and was also obtained as dark green needles ($3 \mathrm{mg}, 15 \%$) which had $\delta_{\mathrm{H}} 1.52,1.60(\mathrm{t}$, CH_{3} of peripheral Et), $3.52-3.56$ (overlapping q, CH_{2} of peripheral Et), 5.51 (dd, $\beta-\mathrm{H}$ of acrylaldehyde), 8.96 (s, 2 meso-H), 9.42 (d, $\alpha-\mathrm{H}$ of acrylaldehyde, $J=16 \mathrm{~Hz}$), 9.74 (d, formyl H, $J=8 \mathrm{~Hz}$), and 11.61 (s, 10 -formyl H).
meso-(β-Formylvinyl)OEP (2n).--The foregoing nickel complex (47 mg) was stirred for 3 min in concentrated sulphuric acid (3 ml), poured onto ice, neutralised with sodium hydrogen carbonate, and extracted with chloroform. The extract was chromatographed on alumina using more chloroform for elution when the cyclised product (7) was obtained as an initial green band followed by the demetallated product as a brown band. The latter was separated and the product isolated and crystallised from dichloromethane-methanol to give greenish brown needles ($16 \mathrm{mg}, 37 \%$), m.p. $227-230$ ${ }^{\circ} \mathrm{C}$ (Found: C, 78.8; H, 8.4; N, 9.75. $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}$ requires C, $79.55 ; \mathrm{H}, 8.2 ; \mathrm{N}, 9.5 \%$) ; $\lambda_{\text {max. }} 383 \mathrm{infl}, 410,510,543,581$, and $632 \mathrm{~nm}(\varepsilon 61500,104500,10500,5850,6800$, and 3950 respectively); $\delta_{\mathrm{H}}-2.87 \mathrm{br}(\mathrm{NH}), 1.61-1.81$ (overlapping t , CH_{3} of peripheral Et), 3.85, 3.93, and 3.95 (overlapping q , CH_{2} of peripheral Et), 6.39 (dd, $\alpha-\mathrm{H}$ of acrylaldehyde), 9.87 and 10.00 (both s, $1: 2$, meso-H), 10.22 (d, CHO), and 10.27 (d, β-H of acrylaldehyde); $\nu_{\text {max. }} 1687 \mathrm{v}$, strong, sharp band $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Nickel meso-(β-Formylvinyl)aetioporphyrin I (11).-By a similar method, nickel meso-vinylaetioporphyrin I (180 mg) was converted into the meso- β-formylvinyl derivative. The product was purified by chromatography on alumina using 20% light petroleum-chloroform for elution. After removal of solvent from the main fraction, the residue was crystalised from dichloromethane-methanol when it formed dark green needles, m.p. $225-226{ }^{\circ} \mathrm{C}$ ($150 \mathrm{mg}, 79 \%$) (Found: C, $71.15 ; \mathrm{H}, 6.95 ; \mathrm{N}, 9.75 . \quad \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NiO}$ requires $\mathrm{C}, 71.45$; $\mathrm{H}, 6.35 ; \mathrm{N}, 9.5 \%), m / e 588\left(M^{+}\right)$; $\lambda_{\text {max. }} 408,436,536,560$, and $592 \mathrm{~nm}(\varepsilon 77560,87040,6240,8660$, and 5970); $\nu_{\text {max. }}(\mathrm{KBr}) 1680 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 1.68\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et$)$, 3.23, 3.28, and 3.32 (all s, $1: 1: 2$, peripheral CH_{3}), 3.74 (q, CH_{2} of peripheral Et), 5.58 (dd, $J_{\alpha \mathrm{H}-\beta \mathrm{H}}=15.5 \mathrm{~Hz}, \beta-\mathrm{H}$ of acrylaldehyde), $9.40(\mathrm{~s}, 3$ meso-H), 9.68 (d, $J=15 \mathrm{~Hz}, \alpha-\mathrm{H}$ of acrylaldehyde), and 9.92 (d, formyl $\mathrm{H} ; J_{\beta \mathrm{H}-\gamma \mathrm{H}} 7$ Hz).

Nickel meso-(3-Hydroxypropenyl)OEP (2m).-Nickel meso-(β-formylvinyl)OEP (21) (103 mg) was reduced with
sodium borohydride (5 mg) in tetrahydrofuran (25 ml) containing water (0.5 ml) at room temperature. After 10 min the colour of the solution changed from green to red and after 1 h water (5 ml) was added followed by benzene (30 ml). The organic layer was separated, washed, dried, and the solvent removed. The residue was chromatographed on silica plates using 20% light petroleum-chloroform for elution. The main fraction was separated, the solvent removed, and the residue crystallised from dichloromethanemethanol to yield the product as dark red needles, m.p. $234-235{ }^{\circ} \mathrm{C}$ ($80 \mathrm{mg}, 77 \%$) (Found: C, 69.0; H, 6.55; N, 9.15. $\quad \mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{NiO}$ requires C, $69.2 ; \mathrm{H}, 6.65 ; \mathrm{N}, 9.2 \%$); $m / e 646\left(M^{+}\right)$; $\lambda_{\text {max. }} 404,530$, and $567 \mathrm{~nm}(\varepsilon 139500,9420$, and 14500 respectively); $\delta_{\mathrm{H}} 1.52$ (s, OH, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 1.70 and 1.78 (both $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 3.45 (s, OH , exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 3.82 ($\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), 4.45 (d, propenyl CH_{2}), 4.98 (d, $J=15 \mathrm{~Hz}, \beta-\mathrm{H}$ of propenyl), 9.18 (d, $J=15 \mathrm{~Hz}, \alpha-\mathrm{H}$ of propenyl), and 9.42 (s, 3-mesoH).

Nickel meso-(3-Hydroxypropenyl)aetioporphyrin I (1m).Nickel meso-(β-formylvinyl)aetioporphyrin I (11) (90 mg) was reduced similarly and gave the carbinol as red needles, m.p. $230-231{ }^{\circ} \mathrm{C}(68 \mathrm{mg}, 75 \%$) (Found: C, $70.9 ; \mathrm{H}, 6.5$; $\mathrm{N}, 9.55 . \quad \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NiO}$ requires $\mathrm{C}, 71.05 ; \mathrm{H}, 6.8 ; \mathrm{N}$, $9.45 \%) ; m / e 592\left(M^{+}\right) ; \lambda_{\max } 404,530$, and $566 \mathrm{~nm}(\varepsilon$ 141540,9640 , and 14970 respectively); $\delta_{\text {H }} 1.48$ (s, OH), $1.66\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ of peripheral Et), $3.23,3.32$, and 3.35 (all s, $1: 1: 2$, peripheral $\left.\mathrm{CH}_{3}\right), 3.78\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et$), 4.46$ (d, propenyl CH_{2}, collapses to s in presence of $\mathrm{D}_{2} \mathrm{O}$), 4.98 (d, $\beta-\mathrm{H}$ of propenyl; $J_{\alpha \mathrm{H}-\beta \mathrm{H}} 15 \mathrm{~Hz}$), 8.98 (d, $\alpha-\mathrm{H}$ of propenyl; $J_{\alpha \mathrm{H}-\beta \mathrm{H}} 15 \mathrm{~Hz}$), and $9.49(\mathrm{~s}, 3$ meso-H).
Nickel meso-(3-Hydroxypropyl)aetioporphyrin I (1n).Nickel meso-(β-methoxycarbonylvinyl)aetioporphyin I (le) $(75 \mathrm{mg})$ was treated with lithium aluminium hydride in dry tetrahydrofuran (20 ml) and heated under reflux for 3 h . Ether and aqueous ammonium chloride were added and the organic layer separated and dried. After removal of solvent the residue was chromatographed on silica plates when three fractions were obtained. Each was separated, solvent removed, and the products crystallised from chloroformmethanol. The fastest-running product was identified as nickel meso-(β-formylvinyl)aetioporphyrin I (1]) (5 mg) by direct comparison with an authentic specimen (above). The second product was similarly identified as nickel meso-(3hydroxypropyl)aetioporphyrin I (1 m) (9 mg) and the final product (ln) ($26 \mathrm{mg}, 36 \%$) was nickel meso-(3-hydroxypropenyl)aetioporphyrin I, m.p. $239-240^{\circ} \mathrm{C}$ (Found: C, 70.4; $\mathrm{H}, 7.25 ; \mathrm{N}, 9.5 . \quad \mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NiO}$ requires $\mathrm{C}, 70.85$; $\mathrm{H}, 7.15 ; \mathrm{N}, 9.45 \%$), $m / e 594\left(M^{+}\right)$; $\lambda_{\max } 338,410,538$, and $574 \mathrm{~nm}(\varepsilon 11410,136990,8370$, and 10080 respectively); $\delta_{\text {H }} 1.22\left(\mathrm{~m}\right.$, propyl $\left.\beta-\mathrm{CH}_{2}\right), 1.72\left(\mathrm{CH}_{3}\right.$ of peripheral Et$), 2.29$ (t , propyl $\gamma-\mathrm{CH}_{2}$), 3.28, 3.30, and 3.34 (all s, $1: 1: 2$ peripheral CH_{3}), $3.82\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of peripheral Et), 4.62 (t, propyl $\left.\alpha-\mathrm{CH}_{2}\right)$, and $9.40(3$ meso -H$)$.
Nickel meso-Buta-1,3-dienylOEP (2r).-Methyl(triphenyl)phosphonium iodide (200 mg) was stirred in dry tetrahydrofuran (20 ml) under nitrogen and an ethereal solution of phenyl-lithium (0.2 ml of 3 m) was added. After the mixture had been stirred for 10 min , solid nickel meso- β formylvinylOEP (2o above) (100 mg) was added with stirring when the initial green colour rapidly changed to red. The stirring was continued for a further 2 h , when the mixture was worked up as usual and the product after removal of solvent subjected to chromatography on alumina using 30% hexane-chloroform for elution. The major red fraction was
separated, the solvent removed, and the residue crystallised from dichloromethane-methanol when it was obtained as long red needles, m.p. $208-210{ }^{\circ} \mathrm{C}(75 \mathrm{mg}, \mathbf{7 5} \%$) (Found: C, 74.7; H, 7.45; N, 8.95. $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{Ni}$ requires C, 74.7; $\mathrm{H}, 7.5$; N, 8.7%), $\lambda_{\text {max. }} 338,408,534$, and $568 \mathrm{~nm}(\varepsilon 15100$, 130600,10390 , and 14970 respectively); $\delta_{\text {H }} 1.61-1.71$ (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 3.75 ($\mathrm{q}, \mathrm{CH}_{2}$ of peripheral Et), 4.86-5.48 [m, $\left.2^{\prime}-\mathrm{H}+2\left(4^{\prime}-\mathrm{H}\right)\right], 6.75\left(\mathrm{dt}, 3^{\prime}-\mathrm{H}\right)$, $8.8\left(\mathrm{~d}, \mathrm{l}^{\prime}-\mathrm{H}\right)$, and 9.33 and 9.35 (both $\mathrm{s}, 1: 2,3$ mesoH).

Formation of the Nickel Complex (7). (i) From Nickel meso-β-FormylvinylOEP.-Nickel β-formylvinylOEP (21) (100 mg) was stirred for 2 h in concentrated sulphuric acid (10 $\mathrm{ml})$. The mixture was poured into ice-water (200 ml), neutralised with saturated aqueous sodium hydrogen carbonate, and extracted with chloroform to give a green solution. After the chloroform extract had been washed with water, it was dried and evaporated and the residue was chromatographed on alumina using 30% hexane-chloroform for elution. The major green band was collected and the product purified further by preparative t.l.c. on silica using chloroform for elution. After removal of solvent the residue was crystallised from dichloromethane-methanol, and the product was obtained as shining dark blue rods (40 $\mathrm{mg}, 41 \%$), m.p. $224-225{ }^{\circ} \mathrm{C}$ (Found: C, $\mathbf{7 4 . 3 5}$; H, 7.55 ; $\mathrm{N}, 9.15 . \quad \mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{Ni}$ requires C, 74.4; H, 7.35 ; N, 8.9\%) ; $\lambda_{\text {max. }} 364,416,500,566,625$, and $677 \mathrm{~nm}(\varepsilon 8860,69250$, $5020,4190,9780$, and 36730 respectively); $\nu_{\text {max. }} 1645$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 0.04\left(\mathrm{t}, \mathrm{CH}_{3}\right.$ of $\mathrm{gem}-\mathrm{Et}_{2}$ groups), 1.42, 1.45, 1.48, and 1.49 (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), $2.28\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of gem-Et t_{2} groups), $3.23,3.31,3.33$, and 3.52 (overlapping d br q, CH_{2} of peripheral Et), 7.70 br (d, 2 H of benzene ring), $7.72,8.45$, and $8.82(\mathrm{~s}, 3$ meso-H), and $8.9 \mathrm{br}(1,1 \mathrm{H}$ of benzene ring) ; $m / e 628$ (100%), 599 (95), 584 (16), and 569 (20); $\delta_{\mathrm{C}} 8.40\left(\mathrm{q}, \mathrm{CH}_{3}\right.$ of $\mathrm{gem}-\mathrm{Et}_{2}$), $16.07-21.45$ (peripheral Et), $35.04\left(\mathrm{t}, \mathrm{CH}_{2}\right.$ of $\mathrm{gem}-\mathrm{Et}_{2}$), $59.12(\mathrm{~s}, \mathrm{C}$ bearing gem Et_{2}), 88.39, 98.04, and 106.88 (all d, 3 meso-C), 112.31 (s, quaternary meso-C), 117.65, 119.94, and 123.48 (all d, C of benzene ring), 133.18 (1), 135.03 (2), 135.71 (1), 137.84 (1), 139.25 (1), 140.03 (2), 141.53 (1), 141.92 (1), 142.50 (1), 143.14 (1), 144.35 (2), 147.94 (1), and 164.64 (1) (all s, ring Cs).
(ii) From Nickel meso-(3-Hydroxypropenyl)OEP.-The nickel complex (2 m) (45 mg) in $N N$-dimethylformamide (7 ml) containing sulphuric acid (3 drops of concentrated) was heated under reflux for 3 h . After 10 min the colour of the solution changed from red to green. The reaction mixture was poured into ice-water (100 ml) and the product extracted into chloroform. The extract was separated, dried, and the solvent removed. The residue was chromatographed on alumina using 70% light petroleum-chloroform for elution. The major green fraction was collected, the solvent removed, and the residue crystallised from dichloro-methane-methanol to give the complex (7) as small greenish blue prisms ($13 \mathrm{mg}, 28 \%$) identical in all respects with the product of the previous experiment.

Cyclisation of meso- β-FormylvinylOEP to (6a).-The aldehyde (2 n) (16 mg) was heated with acetic acid (4 ml) under reflux in a nitrogen atmosphere for 20 h . The acetic acid was distilled off and the resulting oil extracted with chloroform and the extract washed with aqueous sodium hydrogen carbonate and water and then dried and concentrated. The product was then chromatographed on a column of alumina, using chloroform for elution, which gave a minor green band followed by a major greenish brown
band. This was separated, the solvent removed, and the residue crystallised from dichloromethane-methanol when it formed brown microprisms ($4 \mathrm{mg}, 25 \%$), m.p. $223-226$ ${ }^{\circ} \mathrm{C}$, which was identified as the purpurin (6a) on spectral evidence, $\lambda_{\text {max. }} 440,505,554,592,672$, and 734 nm (intensity ratios 9.9, m.1, $1,1.65,1.15$, and 4.15 respectively) ; $\delta_{H} 0.2$ (t , one CH_{3} of peripheral Et), l.62br (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of peripheral Et), 2.35br ($\mathrm{q}, 2 \mathrm{CH}_{2}$ of peripheral Et), 3.65 br (overlapping q, CH_{2} of peripheral Et), 4.15 ($\mathrm{m}, \mathrm{H}-2$), 8.83 (s, H of isocyclic ring), 9.09, 9.28, and 9.32 (all s, 3 meso-H), and 10.16 (s, CHO), m/e $588(95 \%)$ and 559 (100) $\left(\mathrm{C}_{39} \mathrm{H}_{48^{-}}\right.$ $\mathrm{N}_{4} \mathrm{O}$ requires $M, 588$).

Cyclisation of meso- β-MethoxycarbonylvinylOEP to (6b).(i) The porphyrin meso-acrylic ester (20) (74 mg) was heated under reflux in glacial acetic acid (20 ml) in an atmosphere of nitrogen for 24 h . The solvent was distilled off and the residue dissolved in dichloromethane; the extract was washed several times with water, dried, and evaporated. The residue was chromatographed on alumina using 40% hexane-chloroform for elution and the major reddish brown band was separated. In solution, the product appeared red in bulk, but green in thin sections. After removal of solvent, the residue was crystallised from dichloromethanemethanol when it formed brown microneedles, m.p. 243$245{ }^{\circ} \mathrm{C}(40 \mathrm{mg}, 54 \%)$ (Found: $\mathrm{N}, 8.95$. Calc. for $\mathrm{C}_{40} \mathrm{H}_{50}-$ $\mathrm{N}_{4} \mathrm{O}_{2}: \mathrm{N}, 9.05 \%$), $\lambda_{\text {max }} 415 \mathrm{infl}, 430,503,573,652$, and $704 \mathrm{infl} \mathrm{nm}(\varepsilon 87500,142800,5700,6960,14300,6600$, and 41000 respectively); $\delta_{\mathrm{H}}-1.10 \mathrm{br}(\mathrm{NH}),-0.44$ (t , one CH_{3} of $1,2 \mathrm{Et}$ groups), $1.65-1.79$ (overlapping $\mathrm{t}, \mathrm{CH}_{3}$ of remaining Et), 2.5, 3.1 ($\mathrm{m}, \mathrm{CH}_{2}$ of $1,2 \mathrm{Et}$ groups), $3.7-3.8$ (overlapping q, CH_{2} of peripheral Et), 3.98 (s, ester CH_{3}), $c a .4 .0(\mathrm{~m}, 2-\mathrm{H}), 8.66(\mathrm{~s}, \mathrm{H}$ of isocyclic ring), and $9.35,9.40$, and 9.42 (all s, 3 meso -H).
(ii) The porphyrin meso-acrylic ester was heated under reflux for 3 days in dry toluene but there was no evidence of cyclisation and the starting product was recovered unchanged.

Nickel meso-(Hept-1-enyl)aetioporphyrin $\quad I \quad$ (1k).—A suspension of 1,2 -bis(triphenylphosphonium)ethane dibromide (91 mg) in anhydrous tetrahydrofuran (50 ml) was treated with n-butyl-lithium $(0.48 \mathrm{ml}$ of a 0.35 m -hexane solution) in a nitrogen atmosphere. After 10 min , solid nickel meso-formylaetioporphyrin $I^{1}(100 \mathrm{mg})$ was added with vigorous stirring, which was continued for another 30 min, after which the mixture was heated under reflux for 30 min . It was cooled, benzene (100 ml) was added, and the product poured into water. The benzene layer was separated, washed, dried, and the solvent removed. The residue was chromatographed on alumina using 50% chloroformlight petroleum (b.p. $60-80^{\circ}$) for elution. The first red fraction was collected and purified further by preparative t.l.c. on silica using 25% chloroform-light petroleum for elution. The major purple-red band was separated and the product crystallised from dichloromethane-methanol to give purple plates ($41 \mathrm{mg}, 39 \%$), m.p. $166-167^{\circ}$ (Found: C, $74.3 ; \mathrm{H}, 7.8 ; \mathrm{N}, 9.15 \%$; $m / e 630 . \quad \mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{Ni}$ requires C, $74.25 ; \mathrm{H}, 7.65 ; \mathrm{N}, 8.9 \% ; M^{+} 630$), $\lambda_{\text {max. }} 406,529$, and 564 $\mathrm{nm}(\varepsilon 160895,9925$, and 14890$)$; $\delta_{\mathrm{H}} 0.85\left(\mathrm{t}\right.$, meso- $\left.7^{\prime}-\mathrm{CH}_{3}\right)$, $1.3\left(\mathrm{~m}\right.$, meso- $4^{\prime}-, 5^{\prime}$-, and $\left.6^{\prime}-\mathrm{CH}_{2}\right), 1.7\left(\mathrm{CH}_{3}\right.$ of $\left.\beta-\mathrm{Et}\right), 2.4(\mathrm{~m}$, meso- $3^{\prime}-\mathrm{CH}_{2}$), $3.28\left(\mathrm{~s}, 1 \beta-\mathrm{CH}_{3}\right), 3.33\left(\mathrm{~s}, 1 \beta-\mathrm{CH}_{3}\right), 3.35(\mathrm{~s}$, $2 \beta-\mathrm{CH}_{3}$), 3.8 (unsym. q, $4 \mathrm{CH}_{2}$ of $\beta-\mathrm{Et}$), $4.8\left(\mathrm{dt}\right.$, meso- $2^{\prime}-\mathrm{CH}$; $J_{1^{\prime} 2^{\prime}}=16 \mathrm{~Hz}$), and $8.6\left(\mathrm{~d}\right.$, meso- $\left.1^{\prime} \mathrm{H}\right)$. A second band was eluted from the column with chloroform-light petroleum ($1: 1$). The product was further separated by preparative t.l.c. on silica using chloroform-light petroleum ($1: 3$) when
a green fraction proved to be uncharged aldehyde (la) and a red fraction ($6 \mathrm{mg}, 6 \%$) after crystallisation from chloro-form-methanol proved to be the corresponding carbinol (lb) on the basis of comparison of u.v., i.r., and n.m.r. spectra.

We than the S.R.C. for support. One of us (G. A. W.) thanks the University of Melbourne for a Travelling Scholarship.

[^0]: ${ }^{1}$ A. W. Johnson and D. Oldfield, J. Chem. Soc. (C), 1966, 794.
 ${ }^{2}$ D. P. Arnold, A. W. Johnson, and M. Winter, J.C.S. Perkin I, 1977, 1643.
 ${ }^{3}$ D. P. Arnold, A. W. Johnson, and M. Mahendran, J.C.S. Perkin I, 1978, 366.
 ${ }^{4}$ H. Callot, Bull. Soc. chim. France, 1973, 3413.

[^1]: 5 J.-H. Fuhrhop and L. Witte, Angew. Chem. Internat. Edn., 1975, 14, 361.
 ${ }^{6}$ J.-H. Fuhrhop, L. Witte, and W. S. Sheldrick, A nnalen, 1976, 1537; see also A. Treibs, Ann. New York Acad. Sci., 1973, 206, 97.
 ${ }^{7}$ H.-H. Inhoffen and W. Nolte, Annalen, 1969, 725, 167.
 ${ }^{8}$ P. S. Clezy, C. L. Lim, and J. S. Shannon, Austral. J. Chem., 1974. 27, 1103.

[^2]: ${ }^{9}$ A. W. Nichol, J. Chem. Soc. (C), 1970, 903.
 ${ }^{10}$ R. B. Woodward, Angew. Chem., 1960, 72, 651.

[^3]: ${ }^{11}$ H.-H. Inhoffen, J. W. Buchler, and P. Jäger, Progr. Chem. Org. Nat. Prod., 1968, 26, 284.

[^4]: * For details of the Supplementary Publications Scheme see Notice to Authors No. 7 in J.C.S. Perkin I, 1977, Index issue.
 ${ }^{15}$ E. B. Fleischer, J. Amer. Chem. Soc., 1963, 85, 146.
 ${ }_{16}$ T. A. Hamor, W. S. Caughey, and J. L. Hoard, J. Amer, Chem. Soc., 1965, 87, 2305.

[^5]: ${ }^{17}$ E. F. Meyer, Acta Cryst., 1972, B28, 2162.
 ${ }^{18}$ D. L. Cullen and E. F. Meyer, J. Amer. Chem. Soc., 1974, 96, 2095.
 ${ }_{19}$ J. L. Hoard, Ann. N.Y. Acad. Sci., 1973, 206, 18.

[^6]: ${ }^{20}$ D. M. Collins and J. L. Hoard, J. Amer. Chem. Soc., 1970, 92, 3761.
 ${ }^{21}$ L. Sacconi, Transition Metal Chem., 1968, 4, 199.
 ${ }^{22}$ P. N. Dwyer, J. W. Buchler, and W. R. Scheidt, J. Amer. Chem. Soc., 1974, 96, 2789.
 ${ }^{23}$ B. Chevrier and R. Weiss, Inorg. Chem., 1976, 15, 770.
 ${ }^{24}$ B. Chevrier and R. Weiss, J. Amer. Chem. Soc., 1975, 97 , 1416.

[^7]: ${ }^{25}$ M. J. Hamor, T. A. Hamor, and J. L. Hoard, J. Amer. Chem. Soc., 1964, 86, 1938.
 ${ }^{26}$ E. B. Fleischer, C. K. Miller, and L. E. Webb, J. Amer. Chem. Soc., 1964, 86, 2342.
 ${ }^{27}$ I. Moustakali and A. Tulinsky, J. Amer. Chem. Soc., 1973, 95, 6811.

